The exchange property for row and column-finite matrix rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On parallelizing matrix multiplication by the column-row method

We consider the problem of sparse matrix multiplication by the column row method in a distributed setting where the matrix product is not necessarily sparse. We present a surprisingly simple method for “consistent” parallel processing of sparse outer products (column-row vector products) over several processors, in a communication-avoiding setting where each processor has a copy of the input. T...

متن کامل

Generalizing the Column-Row Matrix Decomposition to Multi-way Arrays

In this paper, we provide two generalizations of the CUR matrix decomposition Y = CUR (also known as pseudo-skeleton approximation method [1]) to the case of N-way arrays (tensors). These generalizations, which we called Fiber Sampling Tensor Decomposition types 1 and 2 (FSTD1 and FSTD2), provide explicit formulas for the parameters of a rank-(R,R, ..., R) Tucker representation (the core tensor...

متن کامل

Low-Rank Matrix Recovery from Row-and-Column Affine Measurements

We propose and study a row-and-column affine measurement scheme for low-rank matrix recovery. Each measurement is a linear combination of elements in one row or one column of a matrix X . This setting arises naturally in applications from different domains. However, current algorithms developed for standard matrix recovery problems do not perform well in our case, hence the need for developing ...

متن کامل

Breaking Row and Column Symmetries in Matrix Models

We identify an important class of symmetries in constraint programming, arising from matrices of decision variables where rows and columns can be swapped. Whilst lexicographically ordering the rows (columns) breaks all the row (column) symmetries, lexicographically ordering both the rows and the columns fails to break all the compositions of the row and column symmetries. Nevertheless, our expe...

متن کامل

Non-negative matrix factorization with fixed row and column sums

In this short note, we focus on the use of the generalized Kullback–Leibler (KL) divergence in the problem of non-negative matrix factorization (NMF). We will show that when using the generalized KL divergence as cost function for NMF, the row sums and the column sums of the original matrix are preserved in the approximation. We will use this special characteristic in several approximation prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2003

ISSN: 0021-8693

DOI: 10.1016/s0021-8693(03)00266-7